EEG Based Emotion Identification Using Unsupervised Deep Feature Learning

نویسندگان

  • Xiang Li
  • Peng Zhang
  • Dawei Song
  • Guangliang Yu
  • Yuexian Hou
  • Bin Hu
چکیده

Capturing user’s emotional state is an emerging way for implicit relevance feedback in information retrieval (IR). Recently, EEGbased emotion recognition has drawn increasing attention. However, a key challenge is effective learning of useful features from EEG signals. In this paper, we present our on-going work on using Deep Belief Network (DBN) to automatically extract highlevel features from raw EEG signals. Our preliminary experiment on the DEAP dataset shows that the learned features perform comparably to the use of manually generated features for emotion recognition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

Neural networks based EEG-Speech Models

In this paper, we describe three neural network (NN) based EEG-Speech (NES) models that map the unspoken EEG signals to the corresponding phonemes. Instead of using conventional feature extraction techniques, the proposed NES models rely on graphic learning to project both EEG and speech signals into deep representation feature spaces. This NN based linear projection helps to realize multimodal...

متن کامل

EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation

Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a sophisticated learning algorithm that can represent high-level abstraction is required. This study proposes the utilization of a deep learning network (DLN) to discover unknown feature correlation between input signals that is crucial for the learning task. The DLN is implemen...

متن کامل

Unsupervised feature learning for electronic nose data applied to Bacteria Identification in Blood

Electronic nose (e-nose) data represents multivariate time-series from an array of chemical gas sensors exposed to a gas. This data is a new data set for use with deep learning methods, and is highly suitable since e-nose data is complex and difficult to interpret for human experts. Furthermore, this data set presents a number of interesting challenges for deep learning architectures per se. In...

متن کامل

Human Emotion Recognition with Electroencephalographic Multidimensional Features by Hybrid Deep Neural Networks

The aim of this study is to recognize human emotions by electroencephalographic (EEG) signals. The innovation of our research methods involves two aspects: First, we integrate the spatial characteristics, frequency domain, and temporal characteristics of the EEG signals, and map them to a two-dimensional image. With these images, we build a series of EEG Multidimensional Feature Image (EEG MFI)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015